Cosic M., Folic R.: Performance Analysis of Damaged Buildings Applying Scenario of Related Non-Linear Analyses and Damage Coefficient, Building Materials and Structures, Vol. 58, No. 3, 2015. pp. 3-27.


The paper deals with a methodology developed and presented for analyzing the damage on structures exposed to accidental and seismic actions. The procedure is based on non-linear numerical analysis, taking into account the principles of Performance-Based Seismic Design (PBSD). The stiffness matrix of the effects of vertical action is used as the initial stiffness matrix in non-linear analysis which simulates the collapse of individual ground-floor columns, forming thereby a number of possible scenarios. By the end of the analysis that simulates the collapse of individual columns, the stiffness matrix is used as the initial stiffness matrix for Non-linear Static Pushover Analysis (NSPA) of bi-directional seismic action (X and Y directions). Target displacement analyses were conducted using the Capacity Spectrum Method (CSM). The structure’s conditions/state was assessed based on the calculated global and inter-storey drifts and the damage coefficient developed. The damage level to the building was established using an integrated approach based on global and inter-storey drifts, so that, depending on the level of displacements for which the drifts are identified, a more reliable answer can be obtained. Applying the damage coefficient, a prompt, reliable and accurate indication can be obtained on the damage level to the entire structure in the capacitive domain, from elastic and non-linear to collapse state.


non-linear analysis, scenario, accidental and seismic action, damage coefficient

error: Content is protected !!!